Мат-2019, результаты 10-9-8-7.

Previous Entry Поделиться Next Entry
15 января, 15:14
e_kaspersky
Дорогие мальчики и девочки, всем - привет-привет!

Новый 2019-й год всё неудержимее несётся куда ему предназначено, а тем временем мы с группой путешественников только что вернулись с дальних островов, спустились с эквадорских вулканов и постепенно возвращаемся в привычную нам цивилизацию, скачиваем почту, смотрим интернеты... И пора утрамбовывать разные не до конца доделанные в самом конце прошлого года делишки, объявлять результаты и награждать победителей.

mk2-cut

Если помните, то в конце прошлого года я накинул задачку: из десяти чисел 10-9-8-...-1, четырёх арифметических действий и скобок получить номер текущего года по Григорианской версии. Итак, эта арифметическая конструкция решена, причём есть весьма элегантные цифровые выкладки. Смотрите сами, "во-первых, это красиво" (с) старый анекдот ->

( 10 * 9 * 8 - 7 * 6 - 5 ) * ( 4 - 3 + 2 * 1 ) = 2019 (автор Skarbovoy)
( 10 + 9 ) * ( 8 + 7 + 6 ) * 5 + 4 * ( 3 + 2 + 1 ) = 2019 (автор eve_nts)
(10 + 9 * 8 * 7 - 6 - 5 ) * 4 + 3 * 2 + 1 = 2019 (тоже eve_nts)

Большое спасибо добровольным активистам, было весьма интересно наблюдать и участвовать в процессе поиска правильных решений, искать ошибки, придумывать альтернативные варианты. Итак, вот наши арифметические герои, которые в ближайшее время получат обещаные Дедом Морозом новогодние подарки:

№1. Яна Барсукова за красивые решения самой сложной части задачки, а заодно за обнаруженную ошибку в моих примерах. Этого одарённого человека ждёт экшн-камера.
№2. Skarbovoy за многочисленные варианты 10-9-8-7.
№3. eve_nts за кропотливое исследование всех возможных вариантов для 10-ки.

Обоим подарки от Деда Мороза - рюкзаки Bobby.

Поощрительные призы: 1) Хусаинов Марат за элегантную конструкцию, 2) voffka_33 за волю к победе и 3) sir_derryk за стихи на цифры.

На самом деле всего мы вместе нашли аж 45 вариантов решения этой математической загвоздки! Сорок-пять! Они все будут перечислены чуть ниже под катом, чтобы не захламлять место в самом начале текста.

Заодно получилось несколько "запрещённых читерских" решений, например:

( 10 * ( 9 - 8 ) * (( 76 ) - 5 - 4 ) + 3 ) * ( 2 + 1 ) = 2019 // "76" - цифры вот так склеивать нельзя! :)

Вот пример мега-читерства, но ведь красиво!

(1098 - 76 - 5 - 4 - 3) * 2 - 1 = 2019 // придумано лично мной.

Итак, для 10-ки нашлась целая куча решений, но что же там дальше... Ведь не стоит останавливаться на достигнутом, пора переходить к более сложным схемам. Сколько вариантов найдётся для "девятки"? То есть, в тех же условиях нужно получить искомое "2019" из усечённого набора продуктов: 9-8-7-6-5-4-3-2-1. Теперь без десятки.

===== 9 =====

Это сложнее? Да, сложнее. Это решабельно? Да - причём многократными вариантами, нашлось около 20 решений, некоторые весьма неплохие:

9 * 8 * 7 * (6 + 5 - 4 - 3) + 2 + 1 = 2019 (автор Skarbovoy, по аналогии с решением для 2018 в прошлом году)
( 9 * 8 * 7 - 6 + 5 ) * 4 + 3 * 2 + 1 = 2019 (eve_nts)

А как вам вот такое? За пределами правил, но ведь красиво, спору нет!

9^3 + 8^3 + 7^3 + 6^3 + 5^3 + 4^3 + 3^3 + 2 + 1^3 = 2019 (автор Хусаинов Марат).

===== 8 =====

Ого-го! Жизнь продолжает радовать нас своими усложнениями. Что получилось для восьмёрки? Да, есть и такие арифметические исхитрения в нашей копилке. Вот, например, как вам такой вариант:

8 * 7 * 6 * (5 + 4 - 3) + 2 + 1 = 2019 (автор Skarbovoy)

===== 7 =====

Оппа... А вот вывести заветное "2019" базовой арифметикой из 7-6-5-4-3-2-1 никак не получается. Если даже просто перемножить имеющиеся цифры, то получится "7*5*4*3*2*1 = 5040". Что-то мне подсказывает, что дожить до года с таким номером не смогут не только все, но и каждый из присутствующих. Тем более, что арифметической алхимией мы именно "2019" вызвездить намереваемся, а не какие-либо ещё значения.

Для "2019" из имеющегося супового набора надо выкинуть какую-либо из цифр. Например, "2". Но даже перемножив оставшееся, мы получаем "2520", а просто "2,1" никакой арифметической магией не превратят это в "2019". Если же выкинуть тройку... То её надо перемножать на оставшееся (мы же помним, что "2019=673*3"). Попробуйте получить "673" из набора "7-6-5-4--2-1"... Ага, нету.

Короче, для решения задачки от семёрки и ниже нам потребуется расширенный арифметический набор, но об этом будет в следующий раз. Сейчас же давайте кликать на остальной текст, дабы насладиться шедеврами арифметической кулинарии, позавидовать усердию мозговых извилин наших победителей, а вдруг и придумать альтернативные решения - почему бы и нет?

Кстати, сразу объявляю, что все решения получены "вручную", то есть без тупого компьютерного перебора. С такой задачкой сейчас справится и пятиклассник, а вот свои собственные мозги прогреть на арифметическом колдовстве - это удивительное удовольствие! Уверяю вас всех. Итак, пора клацать по ссылке ->



Итак, дорогой читатель, ты кликнул на <перейти глубже>, то есть, твоё любопытство неудержимо влечёт тебя в самые глубокие дебри примитивной математики. Не беспокойся, дорогой читатель, ты не одинок. Влечение, которое привело тебя в эти днища начально-арифметической трясины, знакомо многим. Наиболее арифметико-зависимые (хотел сказать - "ужаленные арифметикой") - они ... но что-то я отвлёкся. Пора переходить к обещанным цифровым жонглированиям.

Но прежде - несколько советов, заявлений и правил, прежде чем переходить к списку всех известных мне решений =>

Правило 1. Проверять свои выкладки на правильность можно на онлайн-калькуляторах (например) - они поддерживают не только арифметические действия, но и разные другие математические причуды.

Правило 2. Примеры записываются "по алфавиту", где первыми идут цифры, потом скобки, знаки арифметики в порядке "* / + -", это сделано для того, чтобы удобнее проверять на новизну свои собственные результаты.

Правило 3. "Тавтологическая" арифметика сводится к "алфавитному" аналогу. Например,

3.1. Тавтология типа "n*1", "n/1" и "n^1" считается как один вариант и записывается как "n*1". Тоже самое, если "a-b=1" ->

10 + 9 * 8 * 7 * ( 6 - 5 ) * 4 - 3 * 2 - 1 = 2019
10 + 9 * 8 * 7 / ( 6 - 5 ) * 4 - 3 * 2 - 1 = 2019

- учитывается только первый вариант.

При этом вот такой вариант "3*2*1" и "3+2+1" тавтологией не считается:

10 * 9 * ( 8 + 7 + 6 * 5 / 4 ) - 3 * 2 * 1 = 2019
10 * 9 * ( 8 + 7 + 6 * 5 / 4 ) - 3 - 2 - 1 = 2019

3.2. Тавтология типа "a/b/c" и "a/(b*c) тоже считается как один вариант и записывается как "a/b/c" ->

10 * 9 * 8 * 7 / 6 / 5 * 4 * 3 + 2 + 1 = 2019
10 * 9 * 8 * 7 / ( 6 * 5 ) * 4 * 3 + 2 + 1 = 2019

или:

10 * 9 * 8 * 7 / 6 / 5 * 4 * 3 + 2 + 1 = 2019
10 * 9 * 8 * 7 / ( 6 * 5 / 4 ) * 3 + 2 + 1 = 2019

- также учитывается только первый вариант.

3.3. Само собой не засчитываются варианты (-a)*(-b), поскольку это же "a*b".

Правило 4. Предупреждаю, что если будут появляться новые варианты решения задачки, то они будут добавляться вот в этот же список. Сюда, в этот же текст. Посему любопытствующие могут сюда заглядывать, если вдруг появится метка об изменениях.

Советы и Методы. Решение задачки "2019" (да и всех подобных) разбивается на несколько методов:

Метод1. Разложение на простые и подбор вариантов. "2019=3*673", из "10-...-1" надо сложить тройку и остальное.

Метод2. Простая сумма. "2019 = 20?? " (или рядом) + N, где N составляется из "10-9" и/или "4-3-2-1", а из оставшегося получается "20?? " или рядом. Я доступно излагаю? Или нужны пояснения?

Метод3. Сложная сумма. "2019 = A +/- B". Ищем A и B, сумма или разность которых даёт искомое "2019".

Метод4. Кратное. Подбор числа, кратного "2019" из "10-...-5-4-3" (4038, 6057, ...), затем деление его на 2, 3, 4 или другие варианты, которые можно составить из оставшихся цифр.

Метод5. Везение. Во сне приснилось! - и –>

Метод6. Наверняка есть ещё варианты поиска решений, мне пока неизвестные.

Итак, варианты для 10-9-8-7-6-5-4-3-2-1 =>

===== 10 =====

--- 3*673

Вариантов много, как и ожидалось.

( 10 * 9 * 8 - 7 * 6 - 5 ) * ( 4 - 3 + 2 * 1 ) = 2019 (автор Skarbovoy)
(( 10 * 9 * 8 ) - ( 7 * 6 + 5 * ( 4 - 3 ))) * ( 2 + 1 ) = 2019 (моё, потом независимо voffka_33)
( 10 + (( 9 * ( -8 + 7 + 6)) * 5 - 4 ) * 3) * (2 + 1 ) = 2019 (тоже моё)
(( 10 + ( 9 * 8 * ( 7 + ( 6 * 5 )) / 4 ) ) - 3 ) * ( 2 + 1 ) = 2019 (да.. опять моё решение)
( -10 * 9 + ( 8 * ( 7 + 6 ) + 5) * ( 4 + 3 )) * ( 2 + 1 ) = 2019 (Skarbovoy)
( -10 * ( 9 + 8 ) + 7 * 6 * 5 * 4 + 3 ) * ( 2 + 1 ) = 2019 (Skarbovoy)
((( -10 + ( 9 - ( 8 - 7 * 6 ) * 5 )) * 4 - 3 ) * ( 2 + 1 )) = 2019 (Skarbovoy)

--- 1995+24

Наверняка есть и прочие другие 19??+2?

( 10 + 9 ) * ( 8 + 7 + 6 ) * 5 + 4 * 3 * 2 * 1 = 2019 (автор eve_nts)
( 10 + 9 ) * ( 8 + 7 + 6 ) * 5 + 4 * ( 3 + 2 + 1 ) = 2019 (чуть переделанный предыдущий, автор Skarbovoy)

--- 2000+19

10 + 9 + 8 * ( 7 * 6 * ( 5 + 4 - 3 ) - 2 ) * 1 = 2019 (Skarbovoy)
10 + 9 - 8 * ( 7 - ( 6 + 5 ) * 4 * 3 ) * 2 * 1 = 2019 (Skarbovoy), ещё можно после 9 плюсы-минусы поменять :)

--- 2010+9

Автоматом получается решение для 2020 и 2021, надо запомнить на будущее..

10 + 9 * ( 8 * 7 * 6 - 5 + 4 ) / 3 * 2 - 1= 2019 (eve_nts)
10 + ( 9 * 8 * 7 * 6 - 5 - 4 ) / 3 * 2 - 1 = 2019 (eve_nts)

--- 2012+7

Скобки (2+1) и вариант для 2021.

(10 + 9 * 8 * 7 - 6 - 5 ) * 4 + 3 * 2 + 1 = 2019 (eve_nts)

--- 2016+3

2016 - очень правильное число, разложение которого на простые содержит аж восемь цифр! (2*2*2*2*2*3*3*7) - потому и такое количество вариантов. Наверняка есть ещё.

10 * 9 * 8 * 7 / 6 / 5 * 4 * 3 + 2 + 1 = 2019 (друзья из личных контактов, независимо eve_nts)
10 * 9 * ( 8 - 7 ) * 6 / 5 * ( 4 + 3 ) + 2 + 1 = 2019 (моё)
10 + 9 * 8 * 7 * ( 6 - 5 ) * 4 - ( 3 * 2 ) - 1 = 2019 (моё)
10 - 9 + 8 * 7 * 6 * ( 5 + 4 - 3 ) + 2 * 1 = 2019 (eve_nts)
( 10 - 9 ) * 8 * 7 * 6 * ( 5 + 4 - 3 ) + 2 + 1 = 2019 (eve_nts)
(( 10 * 9 + 8 ) * 7 + 6 - 5 * 4 ) * 3 + 2 + 1 = 2019 (Skarbovoy)
10 + 9 * 8 * 7 / ( 6 - 5 ) * 4 - 3 * 2 - 1 = 2019

--- 2020-1

Хммм.. 2020-1 тоже полно вариантов.. Кстати, практически все они сразу же являются решением для 2020.

10 * ( 9 * 8 * 7 / 6 + 5 * 4 - 3 ) * 2 - 1 = 2019 (eve_nts)
10 * ( 9 * 8 * 7 / 6 + 5 + 4 * 3 ) * 2 - 1 = 2019 (eve_nts)
10 * ( 9 * 8 + 7 + 6 * 5 * 4 + 3 ) - 2 + 1 = 2019 (eve_nts)
10 * ( 9 * 8 + ( 7 + 6 ) * ( 5 + 4 + 3 - 2 )) - 1 = 2019 (друзья)
10 * ( 9 - 8 + 7 * 6 * 5 - 4 - 3 - 2 ) - 1 = 2019 (eve_nts)
10 * ( 9 - ( 8 - 7 * 6 * 5 ) - ( 4 + 3 + 2 )) - 1 = 2019 (Skarbovoy)
10 * ( -9 + ( 8 + 7 * ( 6 + 5 + 4 ) - 3 )) * 2 - 1 = 2019 (Skarbovoy)
10 / 9 * ( 8 - 7 * 6 * 5 ) * ( -4 - 3 - 2 ) - 1 = 2019 (Skarbovoy)
( 10 + ( 9 + ( 8 + 7 ) * 6 ) * 5 ) * 4 - 3 + 2 * 1 = 2019 (Skarbovoy)
(( 10 + 9 ) * 8 * 7 + 6 - 5 * 4 * 3 ) * 2 - 1 = 2019 (eve_nts)
(( 10 + 9 ) * ( 8 + 7 + 6 ) + 5 ) * ( 4 + 3 - 2 ) - 1 = 2019 (Skarbovoy)
(( 10 + 9 ) * ( 8 - ( 7 + 6 ) * 5 + 4 ) - 3 ) * ( -2 ) - 1 = 2019 (Skarbovoy)
(( 10 + ( 9 + ( 8 + 7 ) * 6 ) * 5 ) * 4 - ( 3 - 2 )) * 1 = 2019 (Skarbovoy)
(( 10 - 9 + 8 + 7 ) * 6 + 5 ) * 4 * ( 3 + 2 ) - 1 = 2019 (Skarbovoy)
( -10 + 9 * ( 8 + 7 ) * 6 * 5 * ( 4 - 3 )) / 2 - 1 = 2019 (Skarbovoy)
( -10 + ( 9 * 8 * 7 + 6 + 5 )) * 4 * ( 3 - 2 ) - 1 = 2019 (Skarbovoy)
-10 * ( 9 - 8 ) * ( 7 * ( 6 - 5 * 4 ) - 3 ) * 2 - 1 = 2019 (Skarbovoy)
-10 + 9 - ( 8 - 7 * 6 * 5 ) * ( 4 + 3 * 2 ) * 1 = 2019 (Skarbovoy)

--- 2025-6

10 * 9 * ( 8 + 7 + 6 * 5 / 4 ) - 3 * 2 * 1 = 2019 (eve_nts)
10 * 9 * ( 8 + 7 + 6 * 5 / 4 ) - 3 - 2 - 1 = 2019 (eve_nts)

--- прочая магия:

( 10 * ( -9 + ( 8 + 7 ) * 6 ) * 5 / 4 - 3 ) * 2 * 1 = 2019 (Skarbovoy)
-10 - 9 - ( 8 - 7 * 6 ) * 5 * 4 * 3 - 2 * 1 = 2019 (Skarbovoy)

-- Кратное двойке:

( 10 * 9 * ( 8 + 7 - 6 ) * 5 - 4 * 3 ) / 2 * 1 = 2019 (адаптировано из 2018, где автор Skarbovoy)
( -10 * 9 * ( 8 + 7 - 6 * 5 ) - 4 ) * 3 / 2 * 1 = 2019 (Skarbovoy)

Итого: где-то примерно 45 вариантов разложения "2019" в последовательность "10-9-8-...-1". Отличный результат!

Теперь переходим к более сложным вариантам. "Девятка"!

===== 9 =====

По мне, так самые красивые решения вот такие:

( 9 * 8 * 7 - 6 + 5 ) * 4 + 3 * 2 + 1 = 2019
9 + ( 8 * 7 * 6 - 5 + 4 ) * 3 * 2 * 1 = 2019
( 9 * 8 * 7 + 6 - 5 ) * 4 - 3 + 2 * 1 = 2019

Теперь подробнее, всего 22 решения:

-- 2010 + 9

9 + ( 8 * 7 * 6 - 5 + 4 ) * 3 * 2 * 1 = 2019 (eve_nts, Skarbovoy)
9 + ( 8 * 7 * 6 - 5 + 4 ) * ( 3 + 2 + 1 ) = 2019 (Skarbovoy)
9 + ( 8 * 7 * 6 - 5 + 4 ) * 3 * 2 * 1 = 2019 (Skarbovoy)
9 + ( 8 + 7 ) * (( 6 + 5 ) * 4 * 3 + 2 ) * 1 = 2019 (Skarbovoy)
9 - ( 8 + 7 ) * ( 6 - 5 * 4 * ( 3 * 2 + 1 )) = 2019 (Skarbovoy)

-- 2012 + 7

( 9 * 8 * 7 - 6 + 5 ) * 4 + 3 * 2 + 1 = 2019 (eve_nts)

-- 2016 + 3

9 * 8 * 7 * (6 + 5 - 4 - 3) + 2 + 1 = 2019 (Skarbovoy)
9 * 8 * 7 * ( 6 - 5 ) * 4 + 3 * ( 2 - 1 ) = 2019 (Skarbovoy и независимо одни мои знакомые тоже сюда догадались)
9 * 8 * 7 * ( 6 + 5 - 4 - 3 ) + 2 + 1 = 2019 (Skarbovoy)
9 * 8 * ( 7 - 6 + ( 5 + 4 ) * 3 ) + 2 + 1 = 2019 (Skarbovoy)
9 * 8 * ( 7 + ( 6 + 5 - 4 ) * 3 ) + 2 + 1= 2019 (Skarbovoy)
9 * ( 8 + ( 7 + 6 + 5 ) * 4 * 3 ) + 2 + 1 = 2019 (Skarbovoy)
-9 * 8 * ( 7 - 6 - 5 ) * ( 4 + 3 ) + 2 + 1 = 2019 (Skarbovoy)

-- 2018 + 1

( 9 - 8 * (7 - ( 6 + 5 ) * 4 * 3 )) * 2 + 1 = 2019 (Skarbovoy)

-- 2020 -1

( 9 * 8 * 7 + 6 - 5 ) * 4 - 3 + 2 * 1 = 2019 (eve_nts)
( 9 * 8 * 7 + 6 - 5 ) * 4 - 3 / ( 2 + 1 ) = 2019 (Skarbovoy)
( 9 * 8 * 7 + 6 - 5 ) * 4 * ( 3 - 2 ) - 1 = 2019 Skarbovoy)
-( 9 - ( 8 * ( 7 + 6 * 5 * 4 ) + 3 )) * 2 – 1 = 2019 (Skarbovoy)
-( 9 - 8 * ( 7 + 6 * 5 * 4 ) - 3 ) * 2 – 1 = 2019 (Skarbovoy)

-- 2025 - 6

9 * ( 8 + 7 ) * ( 6 + 5 + 4 ) - 3 * 2 * 1 = 2019 (Skarbovoy)
9 * ( 8 + 7 ) * ( 6 + 5 + 4 ) - 3 - 2 - 1 = 2019 (Skarbovoy)

-- кратное 2

( 9 * ( 8 + 7 ) * 6 * 5 - 4 * 3 ) / 2 * 1 = 2019 (Skarbovoy)

-- читерство:

- нет пока -

но очень хочется :)

Уххх.. Мы скакали, мы скакали – наши ноженьки устали!
Перерыв будем делать? Нет? Ну, тогда немного осталось.

Цифры 8-7-6-5-4-3-2-1, которые приведут нас к номеру нашего года, который 2019.

===== 8 =====

Само собой, количество решений сокращается. "Современным учёным" пока известны всего три варианта решения этой проблемы:

-- 2016 + 3

8 * 7 * 6 * ( 5 + 4 – 3 ) + 2 + 1 = 2019 (независимо Skarbovoy, eve_nts)

-- 2020 - 1

// Аплодирую стоя! Браво! Ай, какой же молодец – вот так выкрутасничать в ограниченных условиях.

-( 8 - 7 * 6 * 5) * (4 * 3 - 2) – 1 = 2019 (Skarbovoy)
-( 8 - 7 * 6 * 5) * (4 + 3 * 2) – 1 = 2019 (Skarbovoy)

Пока всё на этом, если есть что-то альтернативное придумать – давайте в комменты. А я на завтра вторую порцию арифметических вкусняшек накрошу, обещаю!



Метки:
Previous Entry Поделиться Next Entry

Записи из этого журнала по тегу «chtogdekogda»


Круто! Приятно такое читать!
Поздравляю победителей...
Была бы помоложе, обязательно поломала бы тоже свою бошечку над вашими задачами ;)

Не зря я ваш блог тутошний пиарю разновозрастным соседям в маршрутках-то :))) это когда еду на дальние расстояния, общаясь с ними.
Мне помнится я Вам уже писала как-то, какой вопрос мне задал 22-х летний молодой человек, это касаемо - Антивирус Касперский :)

Мда, можете сразу ставить мне двойку. А у вас не будет антипризов ? Я-первый кандидат на них.

>>№3. eve_nts за кропотливое исследование всех возможных вариантов для 10-ки.

Спасибо.

Добрый день!
поздравляю с победой! свяжитесь со мной по емейлу sp@kaspersky.com и укажите свой адрес, мы вышлем вам подарок

?

Log in

No account? Create an account